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CREEP-BUCKLING ANALYSTS OF RECTANGULAR-SECTION COLUMNS

By Charles Libove
SUMMARY

A previous analysis of the creep behavior of a slightly curved pin-
ended H-section columm under constant load is extended to the slightly
curved solid rectangular-section column. The analysis leads to a dif-
ferential equation for the plastic strains at the midheight cross
section. The form of the equation indicates the significant parameters
which may be useful in plotting test data on the creep life of columns.
These are a lifetime paremeter +t',,, an initial-straightness param-

eter S or S', and the ratio of the average spprlied stress to the Euler
stress E/UE. A numerical method of solving the differential equetion,

sultable for use with & high-speed diglital computer, is described, and
typicel computed results are glven. The existence of a finite lifetime,
although not evident from the differentisl equation, 1s argued intuitively
and confirmed by the numerical computations.

INTRODUCTION

The high temperatures that can develop in alrcraft during supersonic
£light make it important to consider the possible limitstions due to
creep on the useful service life of the structural components. In a
previous paper (ref. 1), the creep of a slightly curved pin-ended ideal-
ized H-sectlon column under a constant load and constant temperature was
studied theoretically. The material of the column was characterized by
an assumed creep law, for constant uniaxial campressive stress and con-
stant temperature, of the form

where ¢ 1s the total compressive straeln, o 1s the constant compressive
stress, t 1s the time after application of the stress, and E, A, B,
and K are material constants. This form was selected because it

applied to at least two alloys: the 75S-T6 aluminum alloy at 600° F

(ref. 2) and a low-alloy steel at 800° F and, possibly, 1,100° F (ref. 3).
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Shanley's engineering hypotheses of creep (ref. 4) were used in order to
generalize the assumed constant-stress creep law to cover situations in
which the stress varies with time, the condition encountered in the
fibers of a column undergoing continuous lgteral deflection because of

creep.

In the present paper, the analysls of reference 1 18 extended to
the solid rectangular-section column. Except for the shape of the cross
section, the assumptions of reference 1 are retained. In addition to
those cited previously concerning material behavior, these assumptions
are: (a) that the initial shape is half a sine wave, (b) that the load
on the column is applied rapidly enough so that negligible creep occurs
during the losding period (that is, elastic behavior on loading) but
not so rapldly that dynemic effects have to be consldered, (c) that the
shape of the deforming column remains at all times sinusoidal, (d) that
plane sections perpendicular to the (curved) center line of the column
before loading remain plane and perpendicular to the center line after
loading, and (e) that the lateral deflections are small compared to the
length of the column.

The present analysis is very similar in 1ts basic assumptlons to
that of Higgins (ref. 5) which also deals with the solid rectangular-
section column; however, the two developments are entirely different,
with the present development msking evident the significant parameters.

SYMBOLS
A, B, E, K materiasl constants
b thickness of column
I;, In certain integrals, ascross column thickness, of functions
of p at midheight
L length of column
n number of equel spaces into which cross-sectional thick-
ness 1s assumed divided
P load parameter, S
1 -2
%

Ry functions of the values of py, defined by equation (22)
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.t'

1
tCI‘

H1s Hos

gtralightness parameter, e

alternate straightness parameter, e

time

ecolumn lifetime, value of t at which lateral deflec-
tion become infinite

pre \L/K BT
time parameter, t(“ﬁ_) / eBU/K
1/K
AEB / BE’/K
lifetime parameter, t.. = e

width of column

distance measured from center line of column, positive
toward convex side

coordinates z of centers of the n spaces (starting
from concave side)

amplitude of initial sinusoidal deflectlon
midheight lateral deflection (not including &)
compresslve strain

average compressive strain at midheight of column

plastic-strain parameter, %?(é - %)

values of p at centers of spaces

dumy coordinate representing =z

compressive stress

average compressive stress on column
ﬂ2E

Euler buckling stress of column, —
12(L/b)
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ANATYSTS

Assumed ILaw of Materisl Behavior

Because the longitudinel stress in any fiber of a continuously
deflecting column varies with time, the description of the material
given by the assumed constant-stress creep law mentioned in the
introduction

e = 2 4+ peBogk (1)

g
E

is insufficient for purposes of analyzing the creep behavior of a
column. Shanley's englneering hypotheses of creep (ref. 4) can be used
to derive the following generalization of equation (l), which covers
behavior under varying compressive stress: (See pp. 4E0-LEL of ref. 1
for the derivation.)

+ £(ag,e) (2)

M.
il
=] a.

where - -

1/K
#(o,c) = Kla=P) (3)

and the dots denote differentiation with respect to time.

Equation (2) implies that the material behaves elastically under
an infinitely rapid increase or reduction in stress. If equation (2) is
rewritten with the term &/E transposed to the left-hand side, f£(o,¢)
is seen to represent the creep rate, or rate of growth, of the plastic

strain ¢ - 2,
E

Equation (3) implies that, if after a period of creep under com-
presslve stress the stress is reduced to tension (o negative), the
creep rate will still remain positive - that is, compressive - although
it may become exceedingly small as the stress takes on larger tensile
velues. The neglect of tenslle creep will introduce some unconservatism
into the analysis when the lateral deflection gets so large that the
stress becomes tensile on the convex side of the column. The degree of
unconservatism, however, should be small in many practlicel situstions
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in which the initiasl curvature is reasonably small and the average
applied stress 1s reasonably high but not close to the Euler stress.

In such cases the time between the occurrence of appreciable tension
and the calculeted ultimate collapse of the column will be a smgll part
of the total column lifetime.

Quelitative Description of Column Behavior

The column, before application of lcad, 1s shown in figure 1(a).
The cross section 1s rectangular, of thickness b and width w. A
slight initial curvature 1s present in the form of half a sine wave of

emplitude &g.

A load, less than the Euler load, 1s lnstantaneously applied and
produces an average stress ¢ and an instantaneous static deflection
81(0), as shown in figure 1(b). By hypothesis, the material behaves

elastlically during instantaneous stressing; therefore, the conditions
existing immediately after load application (t = 0) are obtainable from
an elastic analysls. At that Instant no plastic strain exists anywhere
in the column.

With the load held constant, the column will continue to deform
because of creep and will deflect laterally because of larger creep
strains on the more highly stressed, or ccncgve, side than on the convex
side (fig. 1(c)). The problem is to determine the history of the

deformations.

That the present anslysis should predict a finite lifetime for
nonvanishing initial curvature can be established by the following
intuitive argument: A solild rectangular-section column is certainly
less stiff than the H-sectlon column formed from it by concentrating
half of the material of the column at each extreme fiber, all other
conditions remaining unchanged. According to the analysis of reference 1,
however, which is based on the same assumptions as the present aenalysis,
the lateral deflection of any slightly curved H-sectlon column approaches
infinity in a finite time; hence, the deflection of the less stiff solid-
sectlion column must certainly become infinite in finite time.

Development of Basic Equations

For a rigorous analysils, equilibrium, compatibility, and the law
of material behavior must be satisfied at all sections of the column at
every instant. For simplicity, however, the deflection shape is assumed
to be merely a magnification of the initial shape - that 1s, half a sine
wave. Because of thils reduction to a single degree of freedom in the
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deflection shape, the requirements of equilibrium, and so forth, can at
best be satlisfied only in scme average way over the length of the column.
An even simpler solution, that followed herein, is to satisfy the require-
ments at only one sectlon of the column, for example, at the midheight.

Figure 2 shows the upper half of the column of figure l(c) es a free
body. The compressive stress o at the cut sectlon varies from fiber
to fiber and also varies in time - that is, o = o(z,t). Similarly, the
compressive strain e = e(z,t).

Equilibrium of vertical forces requires that .
b/2 _
u[‘ o dz = ¢b (4)
-b/2
Equilibrium of moments requires that
b /2
oz dz = -ob(8y + &7) (5)
-b/2.

The assumed law of material behavior (eqs. (2) and (3)) gives the fol-
lowing equation for the strain rate:

. 1/K
é-_—%.l.giAe;BL (6)

Finelly, the assumptions thet the shepe is sinusoidal, that plane sec-
tlons remain plene end perpendicular to the center line of the columm,
and that the deflections are small result in the following relationshilyp
between the strains and the lateral deflection at the column midheight:

2
n=3
L,z

€ = =2

12048
—El.z (7)
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where € 1s the average strain across the section, or

€ = (E)Z=O (8)

and o 1s the Euler buckling stress of the columm; that is,

°F

) J.2(L/b)2

Reduction of Basilc Equations

Equations (%) to (7) can be reduced to a single equation in terms
of the elastic strain ¢ - % at the midhelght of the column, which is

also a function of position and time. Equations (4), (5), and (6) are
first rewritten as follows (wlth cognizance being taken of eq. (7)):

b/2

b/2
j\ (e - 2)dz L € dz
-b/2 E B -b/2

% v['13/2 2 120587 g
- —_— -
T -b/2 € A -—E—Eb

b(? - g) (10)
b/2 - Fo (30 + 8)) b/2
ﬁb/g(e-ﬁ>zdz=—%+—l+lb/gsz@

M b/2< l%%) .
mE )

-b/2

b8, (cE - E)bal
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= (12)

Equation (12) can be reduced further if & 1s eliminated through.use
of equation (10) and & eliminated through use of equation (11). The
result, after slight simplificaetion, 1s the following equation in which

g

€ - o is the only unknown:
d /K 1/ BE 1 b/2 g
<_£’.> = A exp (-2)4._ <_Q>dg+£_
5. 120.T b/2
z|% "7 12% j <e - 9)5 dg (13)
b| b E<0E- ) be(UE_—> b/2 E
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- where £ 1s a dummy varieble representing =z. Introducing the following

parameters:
. the plastic-strain parameter
EB g
=€ ~ =) = lll-
= ( E> ¥ (1k)
the time parsmeter
AER\L/K w5k _ L.

the initisel-straightness parameter

_€83 %0 %8
. K b o.-c
e B0 =g (16)
) and the load parameter
1
——= =P (17)
1.9
CE
permits equation (13) to be simplified to
1/2 1/2
<}u+j“ o3 di4.l§__ di)
2 i/x _ gPelvg -1/2 /e (18)

ot!

where p = u(z,t) 1is subject to the initial condition u(z,0) = O.

Equation (18) gives, essentially, the rate of growth of the plastic
strain to the l/K power for any fiber of the colum as a function of
the position =z of that fiber, the instantaneous value of the plastic-

. strain paremeter u -in that fiber, and the two integrals involving the
instantaneous values of p 1n all the fibers of the colum.
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For the initially perfectly straight column (S = 1), equation (18)

will be satlsfied by u = t'K, as 1s expected, inassmuch as p = t'K is
equivalent to equation (1), the law of material behavior for direct
compression.

Numerical Method of Solution of Equation (18)

Equation (18) lends itself readily to numerical solution by means
of the modified Euler method (ref. 6). The following adaptation of this
method has been found suitable for use in conJunction with a high-speed
digital computer, the National Bureau of Standards Eastern Automatic
Computer (SEAC):

Let the cross sectlion of the column at the midheight be divided into
n equal spaces. The width of each space willl be b/n and the centers
of the spaces, starting at the left-hand, cor concave, side of the column

and going toward the right, will be located at z = 2, = - 2+ > 5
n
Z =25 = = g + g E, +» Let the values of the plastic-strain param-
n
eter  at the centers of these spaces be denoted by His Mo, ¢ * * Hpys

respectively. The two integrals appearing In equation (18) can then be
approximated in terms of the parameters p; and Z{s the very simplest

approximation for machine-calculation purposes being that obtained by
assuming that the Integrand 1s constant over the width of a space and
equal to 1ts value at the center of the space. Then,

il

1/2
b[l/z wod % I, = %(pl oyt e “n) (19)
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Writing equation (18) for the specific z = Z1s Zp, - + - 2y glves

the followlng system of ordinary differential equations which is approxi-
mately equivalent to equation (18):

d1 p,ll/K) _ 1+ %e Epl+Il+6 (—l + %)PIE} ‘w

dat!'

a ugl/K ) S-l+ %eEug+Il+6 (—l+%)PI£I

d(“nl/K> L gn__;e ]Epn+Il+6(-l+ 21;'1>PI;|

at!
~
Ietting
21.1 I 6( SRR l P 22
v Founes(ae e -
Ri =S e
simplifies equations (21) to:
~
a ul1/K
= R,
at!
]
T Ry e (23)
d(“nl/K> =R
at’ o
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The parameters R4 are functlons of t' because they involve the
Hi(t')-

Equations (23) define curves of the My plotted against t' and
can be solved in a step-by-step fashion subject to the Initial condlitions
ui(O) = 0. As may be expected on the basils of the physical argument
presented previously, at least one of the pjy, probably pp, will tend to
approach Infinity asymptotically at some finite value of t'. A step-
by~-step solution of equations (23) on the basis of equal increments
of t' therefore should not be attempted. Rather, the solutions should
be carried forward on the basls of equal increments in p; or pll/K,

and the increment in ' should be regarded as one of the unknowns in
each step. A detailed account of the calculation procedure follows.

Suppose that the curves of His Hos * * * Hp plotted against t'
have been traced up to some particular value of t'. It 1s now desilred
to carry these curves forward one more step corresponding to a specified
finite increment In py denoted by Auj. To be determined are the

increment At' in t' and the Increments Aup, Mz, «ov . Ny in the
other py corresponding to the specified increment Ay in pj. Since

the values p; and Ay, are known, the Increment A(ull/K> in the

quantity pll/K can be computed. The first of equations (23) then
glves the followlng approxlmation to At':

. 1/K\__ 1
At = A(“l' >m (24)

With At' known, the remaining equations give the increments A(pgl/K),
A(u3l/KL I A(unl/K> as follows:

>
TN
h=
no
[
~
AN
S
|

= At'Rp(t')

= 2B ()

2
-
N
=
~
2
N
|

F e

A(unl/K) = At'R (1)
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From these increments, the values of o, Hzs * * ° bn corresponding

to t' + At' can be computed. The curves have now been tentatively
advanced one step and tentative values of Ri(t‘ + At') can be deter-

mined. Improved values of At' and A(pgl/K>, A<u5l/K), .« . e A(Fnl/K>
can now be obtained by replacing the right-hand sides of equations (24)

end (25) by averages based on the values of Ry at the end of the

interval as well as at the beginning of the interval, that 1s, by using
the equaticns

SN R VA B L
ot A(“l )2 Ry (t1) " R (6! + AtY) (26)

A(uzl/K> = At %Eg(t') + Ro(t' + At']

A(Lgl/K) = At %@(t’) + Ry(t' + At]

> (27)

A(pnl/K> = At %En(t') + Bp(t' + At'zl

N

The improved values of ui(t' + At') obtained from equations (27)
give new values of R;(t' + At') which can be substituted in equations (26)
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and (27) in order to obtain still better values of At' and A(ugl/K),

A(H51/K): o« . A(pnl/K). This process can be repeated until no change

is evident in the values of At' and ug(t‘ + AL'), p3(t' + AET), o e e
up(t7 + ALY,

The procedure just described can also be used without modification
to start the curves. It 1s necessary to use only the fact that ui(O) = 0.,

Approximate Solution of Equation (18) Based on n = 2

If, for purposes of numerical integration, the cross section were
divided into two equal spaces only, then the system of equations (21)
would reduce to the following pair of equations:

~
a(u X _ S_1/28<ul-“2>(%?"%>
at’
> (28)
d(“el/K _gl/2e (“l'“2><‘31+2‘ %)
Tatt 3

With the differentiations indicated on the left-hand sides carried out,
these equations become ldentical in form with the equations which arise
in the analysis of the two-flange column - namely, equations (21) and (22)
of reference 1. The solution presented in reference 1 can therefore be
used to obtaln the approximaste solution of the present problem corre-
sponding to n = 2. In order to use the solution in reference 1, certain
substitutions should be made in the symbols snd graph labels of that
paper and, then, the results of that paper will apply directly to the
present problem. The substitutions are as follows:

(1) Replace 7R/7L by S

(2) Replace n; by “l(zg - %)
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(3) Replace R by P-g(%% - %)

l - 1
(4) Replace 7t by (%? - %) /KS 1/24

1
5P -1/2
(5) Replace rrber BY (TT - %) 8 / £

(6) The constant K is unchanged

Lateral Deflections, Stralns, and Stresses

With the pi(t') campletely determined by the solution of equa-

tion (18), the time history of the plastic strains e - % is, in effect,

known. Equatlon (11) cen then be used to compute the midheight lateral
deflectlons & (t), end equation (10) gives the history of the average
midheight strain €(t). The strains e(z,t) are then cbtainable from

equation (7). A knowledge of € - % and € 1is sufficlent to determine
the midheight stresses o(z,t).

RESULTS AND DISCUSSION

Significant Parameters

The usefulness of deta obtalned from tests 1s enhanced 1f the data
are presented in terms of the appropriaste parameters. Equation (18) of
the present enaliysls suggests that test data on the creep life of columns
whose material creep curves are adequately represented by equation (1)
may profitably be plotted in terms of the parsmeters K, t’cr, S,
and EVUE, where t'cr is the value of t' corresponding to collapse of
the column. If the analysis were perfectly gpplicable, the test dats
would give a single curve of +t'n, plotted against S for a glven value
of E/GE and a gilven value of ¥. Scatter of test points away from such
a curve will, of course, occur, because of shortcomings of the theory -
for example, the neglect of third-stage creep in equation (1), the approxi-
mate englneering hypotheses used to generalize equation (l), the neglect
of tensile creep in the generalization, the assumption of an exactly
sinusoidal shape for both the initial and the subsequent deflections,
and the assumption of instantaneous elastic loading.
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Inasmuch as the parameter S contains the parameter E/GE and each

plotted curve or test point has a definite value of E/GE associated with
it, a simpler parameter S' may be used instead of S, where

_6Bc Eg

s -e K D
1-

=3

el

(29)

If the test results for a single material at a single temperature
are to be plotted, then A, B, E, and K are the same for all the
tests and the signiflcant paraemeters may be simplified further to

BG o) _
tcre U/K, of E?’ and /0

Calculated Values of t'cr

In the section entitled "Analysis" a numericsl method of solving
equation (18) was gliven, based on dividing the column cross sectlon at
the midheight into n equal spaces and writing equation (18) for the
center of each space. This method has been carried out and found to be
satisfactory for the case K = 1, E/QE = 0.7 and 0.9, and for several
values of S. The value n = 14 was found to lead to sufficilently
accurate results in a trisl calculation, and this value was used for
all the cases.

Figure 3 shows a typlcal curve of p; plotted against t'. (The
curves of o, Hz, = ¢ uy)y ere not shown, but they would lie suc-
cessively below the curve of p;.) This figure tends to confirm the

intuitive argument presented previously to the effect that the deflec-
tions should approach infinity in a finite time. Computation was stopped
when the computed increment in t' corresponding to the specified
increment in p, became less than the precision of the computation.

The last computed value of t' was teken as being equael to the asymptotic
value t'np for all practical purposes. :

The values of t',, taken from a number of curves like the one in
figure 3 are summarized in figure U4 in plots of t'oy against S for
E/ce = 0.7 and 0.9. The circles are the actually computed data through

which the curves are faired.

As 1s to be expected, t',, tends toward zero for columns that are

more and more initislly curved (S——>(3) and towerd infinity for columns
approaching straightness (S—=>1). In order to show more clearly the
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behavior of the curves in these two regions, the data of figure 4 are
replotted in figures 5 and 6 in which logarithmic scales are used to
magnify the region of S =0 and S =1, respectively.

A1l the computations were performed on the Natlonal Bureau of
Standards Eastern Automatic Computer. The computation of a value of
t'ay 1took about 15 minutes, exclusive of the exploratory computation
time required to establish optimum values of precision, the step size
Apl, and the number of cross-sectlonal spaces n. The calculated values

of t'er are felt to be accurate to within 2 percent.

An approximate solutlon for the solid rectangular-sectlion column
corresponding to n =2, as is indicated in the section entitled
"Analysis," already exists implicitly in the two-flange-columm analysls
in reference 1. Filgure 5 of reference 1, which summerizes the theoret-
ical lifetime data for two-flange columns, can therefore be used to yleld
approximate information on the lifetimes of solld columns by replacing
the label TR/7L by the lsbel S and the label 7Ltcr by the label

F 3 ez

<5P l)l/Ké'l/et'

In figure 7, the spproximate results thus obtained for the
rectangular-section column for the cases where K =1 and EVUE = 0.7
and 0.9 are compared with the much more accurate results for these cases
based on computations with n = 14 and obtained from figure 4 of the
present paper.

CONCLUDING REMARKS

On the baslis of certain assumptions regarding the shape of a column
and the creep behavior of the material under varying stress, an analysls
has been made of a slightly curved solid rectangulaer-section pin-ended
column carrying a constant load. The analysis led to a differential
equation for the plastic strains at the mldheight cross section as a
function of time. The form of the equation indicates the significant
paremeters of the problem, which parameters may be useful in plotting
test data on the creep life of columns. These are a lifetime parameter
t'or, an inltial-straightness parameter S or ©S', and the ratio of the
average epplied stress to the Euler stress 0/og.

A numerical methed of solution of the differential equation, suitable
for use with a hlgh-speed digltal computer, has been described, and-
typical computed results have been presented.
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The existence of a finite lifetime, although not evident from the
differential equation, was argued intuiltively and confirmed by the

numerical computations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., March 31, 1953.
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Flgure 1.- Schematic description of column. .m
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o(z,t)

Figure 2.- Upper half of column of figure 1(c).
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i 1 i
.025 .050 top .075
tl
Figure 3,- Variastion of plastic-strain parameter gy with time

perameter t'. K = 1; g/og = 0.7; 8 = 0.1.
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(o] Caloulated point

Faired ourve

S

Filgure L.~ Variation of lifetime parameter t'cr with initial-straightness
parameter S for two values of the load parameter E/UE and for K = 1,
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Figure 5.- Replot of figure 4 showing more clearly the nature of the curves
in the region of S = 0.
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Figure 6.- Replot of figure 4 showing more clearly the nature of the curves
in the region of S = 1.
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Figure T.- Comparlson of approximaste solutlon, based on n = 2, with
accurate solution, based on n = 14, for K = 1.
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